OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

4723
Core Mathematics 3

Thursday
16 JUNE 2005
Additional materials:
Answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 The function f is defined for all real values of x by

$$
\mathrm{f}(x)=10-(x+3)^{2}
$$

(i) State the range of f .
(ii) Find the value of $\mathrm{ff}(-1)$.

2 Find the exact solutions of the equation $|6 x-1|=|x-1|$.

3 The mass, m grams, of a substance at time t years is given by the formula

$$
m=180 \mathrm{e}^{-0.017 t}
$$

(i) Find the value of t for which the mass is 25 grams.
(ii) Find the rate at which the mass is decreasing when $t=55$.

4 (a)

The diagram shows the curve $y=\frac{2}{\sqrt{ } x}$. The region R, shaded in the diagram, is bounded by the curve and by the lines $x=1, x=5$ and $y=0$. The region R is rotated completely about the x-axis. Find the exact volume of the solid formed.
(b) Use Simpson's rule, with 4 strips, to find an approximate value for

$$
\begin{equation*}
\int_{1}^{5} \sqrt{ }\left(x^{2}+1\right) d x \tag{4}
\end{equation*}
$$

giving your answer correct to 3 decimal places.
(i) Express $3 \sin \theta+2 \cos \theta$ in the form $R \sin (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Hence solve the equation $3 \sin \theta+2 \cos \theta=\frac{7}{2}$, giving all solutions for which $0^{\circ}<\theta<360^{\circ}$.

6 (a) Find the exact value of the x-coordinate of the stationary point of the curve $y=x \ln x$.
(b) The equation of a curve is $y=\frac{4 x+c}{4 x-c}$, where c is a non-zero constant. Show by differentiation that this curve has no stationary points.

7 (i) Write down the formula for $\cos 2 x$ in terms of $\cos x$.
(ii) Prove the identity $\frac{4 \cos 2 x}{1+\cos 2 x} \equiv 4-2 \sec ^{2} x$.
(iii) Solve, for $0<x<2 \pi$, the equation $\frac{4 \cos 2 x}{1+\cos 2 x}=3 \tan x-7$.

The diagram shows part of each of the curves $y=\mathrm{e}^{\frac{1}{5} x}$ and $\left.y=\sqrt[3]{(} 3 x+8\right)$. The curves meet, as shown in the diagram, at the point P. The region R, shaded in the diagram, is bounded by the two curves and by the y-axis.
(i) Show by calculation that the x-coordinate of P lies between 5.2 and 5.3.
(ii) Show that the x-coordinate of P satisfies the equation $x=\frac{5}{3} \ln (3 x+8)$.
(iii) Use an iterative formula, based on the equation in part (ii), to find the x-coordinate of P correct to 2 decimal places.
(iv) Use integration, and your answer to part (iii), to find an approximate value of the area of the region R.

The function f is defined by $\mathrm{f}(x)=\sqrt{ }(m x+7)-4$, where $x \geqslant-\frac{7}{m}$ and m is a positive constant. The diagram shows the curve $y=\mathrm{f}(x)$.
(i) A sequence of transformations maps the curve $y=\sqrt{ } x$ to the curve $y=\mathrm{f}(x)$. Give details of these transformations.
(ii) Explain how you can tell that f is a one-one function and find an expression for $\mathrm{f}^{-1}(x)$.
(iii) It is given that the curves $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ do not meet. Explain how it can be deduced that neither curve meets the line $y=x$, and hence determine the set of possible values of m. [5]

